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ABSTRACT

Active learning for ranking, which is to selectively label the
most informative examples, has been widely studied in re-
cent years. In this paper, we propose a general active learn-
ing for ranking strategy called Variance Maximization (VM).
The algorithm relies on noise injection to perturb the orig-
inal unlabeled examples and generate the rank distribution
of each example. Using a DCG-like gain function to mea-
sure each ranked list sampled from the rank distribution,
Variance Maximization selects the unlabeled example with
the largest variance in the gain. The VM strategy is ap-
plied at both the query level and the document level, and a
two-stage active learning algorithm is further derived. Ex-
perimental results on both the LETOR 4.0 dataset and a
real-world Web search ranking dataset have demonstrated
the effectiveness of the proposed active learning approach.

Categories and Subject Descriptors

H.3.3 [Information Systems|: INFORMATION STOR-

AGE AND RETRIEVAL—Information Search and Retrieval;
1.2.6 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Learning

General Terms
Algorithms, Experimentation, Theory

Keywords

Active Learning, Variance Maximization, Noise Injection,
Learning to Rank

1. INTRODUCTION

Learning to rank is to automatically generate ranking
functions through supervised learning. It has been wide-
ly applied to many information retrieval (IR) applications,
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such as Web search and recommendation. Like many oth-
er supervised learning tasks, training a high quality ranking
function is usually at the cost of a large number of labeled
data. However, in many real-world learning-to-rank applica-
tions, it is very expensive to collect a large volume of labeled
training data.

To reduce the cost of labeling, active learning has been
applied to ranking [1, 13, 2, 8, 10]. Compared to tradition-
al active learning tasks, active learning for ranking is more
complex due to a unique query-document structure. Most
of the existing active learning for ranking algorithms are at
either the query level or the document level [1, 13, 2, 10]. In
recent year, Long et al. proposed a novel two-stage active
learning for ranking framework [8], Expected Loss Optimiza-
tion (ELO), to integrate the query level active learning and
the document level active learning.

Uncertainty sampling is a popular active learning strategy
in classification and regression task. Traditional uncertain-
ty strategy selects the unlabeled example with the highest
uncertainty in predicted scores. However, the predicted s-
cores are not directly related to the orders in ranking task.
In this paper, we explore how to effectively measure the un-
certainty in ranking. We propose a general active learning
strategy for Web search ranking called Variance Maximiza-
tion (VM). The underlying motivation is that variation in
ranking are highly correlated with uncertainty in ranking.
Similar to SoftRank [11], we assume that each ranking score
is non-deterministic and is sampled from a certain score dis-
tribution, and the score distribution can be transformed to
rank distribution. The difference between the two studies
lies in the fact that we leverage noise injection to generate
the score distribution while the score distribution is gener-
ated by smoothing the score with equal variance Gaussian
distribution in the case of [11]. Using a DCG-like gain func-
tion to measure each ranked list sampled from the rank dis-
tribution, Variance Maximization selects the unlabeled ex-
ample with the largest variance in the gain. Considering the
query-document structure in Web search ranking, we inves-
tigate VM at both the query level and the document level
and extend to a two-stage active learning algorithm. Ex-
perimental results on both the LETOR 4.0 data set and a
real-world Web search ranking data set have demonstrated
the effectiveness of our approach.

The reminder of this paper is organized as follows: We first
review the related work in Section 2. Section 3 describes the
process to generate score distribution by noise injection and
to transform score distribution to rank distribution. Our
approach, Variance Maximization, is presented in Section



4. Section 5 discusses experiments and results. Finally, we
conclude the paper in Section 6.

2. RELATED WORK

So far, various active learning strategies have been pro-
posed. One common strategy is called wuncertainty sam-
pling. The uncertainty sampling selects the unlabeled exam-
ple about which it is most uncertain how to label. Another
typical active learning strategy is query by committee (QBC)
algorithm [4]. The QBC algorithm generates a committee of
models and selects the unlabeled data instance about which
the models disagree the most. A comprehensive active learn-
ing survey can be found in [9].

Compared to traditional supervised learning setting, a u-
nique query-document structure exists in learning to rank
setting. Considering the structure, existing active learning
for ranking may be categorized into two types: the query
level active learning and the document level active learn-
ing. For the query level active learning, Yilmaz and Robert-
son [12] empirically showed that having more queries but
shallow documents performed better than having less queries
but deep documents. Cai et al. [1] proposed a query selection
strategy by combining domain adaptation and QBC-based
active learning. Yu [13] proposed a document level active
learning algorithm, which treats the document pairs with
similar predicted relevance scores as the most informative
example. The algorithm is applied to RankSVM [6]. An-
other state-of-art document selection strategy was proposed
in [2]. They choose the documents which are expected to
change the current model mostly. The learning to rank al-
gorithms are RankSVM and RankBoost [3]. Silva et al. [10]
proposed a novel document level active sampling algorithm
based on association rules, which does not rely on any initial
training seed. Recently, Long et al. [8] proposed a two-stage
active learning framework to integrate the query level ac-
tive learning and the document level active learning. Under
the Bayesian framework, the Expected Loss Optimization
(ELO) principle is introduced for active learning.

3. GENERATING RANK DISTRIBUTION
BY NOISE INJECTION

Similar to SoftRank [11], we assume each ranking score is
non-deterministic and is sampled from a certain score distri-
bution. We propose to approximate the score distribution by
noise injection. The method first perturbs the original un-
labeled example by injecting random noises and generates a
set of noisy ‘replicates’. The distribution of the correspond-
ing ranking scores, predicted by the current ranking mod-
el, is treated as an approximation of the score distribution,
which is then transformed to the rank distribution.

3.1 Smoothing Score by Noise Injection

Intuitively, if a data example is close to the decision bound-
ary, a small perturbation in feature value may make it cross
the decision boundary and result in changes in the corre-
sponding predicted ranking scores. On the contrary, if a
data example is far away from the decision boundary, the
predicted scores under reasonable perturbation will remain
consistent. Based on the above intuition, we propose to s-
mooth the score of a data example by noise injection. Let
€ € [emin, €maz] be the feature vector of an unlabeled data
example. Noise injection distorts the original data example
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Figure 1: The score distributions of three example
documents. doc; may be close to a decision boundary
because is assigned two predicted scores after a small
perturbation. Similarly, doc; may be far away from
any decision boundary and docs may be close to the
intersection of multiple decision boundaries.

e by adding some random noise 77 to the features of e and
generates m noisy data examples around the original data
example. We formulate noise injection as follows:

e=e+n (i=1,2,..,m)

where n ~ N(p, X).

Given a ranking function, let [f(e'), - - - , f(e™)] represents
the predicted score vector for the data instance e after per-
turbation. We smooth the predicted ranking score of the
original data instance e using the corresponding score vector
[f(eh), -, f(e™)]. Figure 1 shows the score distributions of
three documents after noise injection. Under perturbation,
the data example doc: is assigned two ranking scores with
a probability of 0.3 and 0.7, respectively. This implies that
doci may be close to a decision boundary and hence a smal-
I perturbation leads its ‘replicates’ to cross the boundary.
Similarly, the perturbation of docs results in four predicted
ranking scores, suggesting that docs may be close to the in-
tersection of multiple decision boundaries. On the contrary,
docz may be far away from any decision boundary because
its ranking scores are very consistent under perturbation.

(1)

3.2 Generating Rank Distribution

In learning to rank, we are not directly interested in the
absolute value of the predicted score, but rather the resulted
ranked list ordered by the predicted ranking score. There-
fore, the score distribution is transformed to the rank distri-
bution. Considering the query-document structure in Web
search ranking, we consider the rank distribution at two lev-
els: the query level rank distribution and the document level
rank distribution.

To generate the query level rank distribution, assuming
there are n documents associated with a query, we random-
ly sample a score from the score distribution of each doc-
ument to generate a score vector [f(d'),---, f(d™)]. Then
we sort the documents according to the score vector to gen-
erate a ranked list for the query. By performing the above
process multiple times, we get an approximation of the rank
distribution.

Given a query-document pair, to generate its document
level rank distribution, the predicted ranking scores of the
other documents related to the given query are fixed to be
the predicted scores without noise perturbation. We then
randomly sample the score distribution of the given docu-
ment to generate a score vector [f(d'),---, f(d"™)] and sort
it to produce a ranked list for the document. Again, the
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Figure 2: The score distributions of two example
queries. The ranking model f is certain about query;
because its ranked list is stable and is least certain
with querys because there are multiple ranked lists.

sampling and sorting process is performed multiple times to
generate an approximation of the rank distribution.

4. VARIANCE MAXIMIZATION

In the case of learning to rank, change in ranking scores
does not necessarily leads to variation in the final ranking.
Since we are mainly concerned with the ranking of the ex-
ample rather than the absolute ranking scores, we compute
the variance in terms of ranking rather than the variance of
the predicted ranking scores. We provide the details of VM
in the following section.

4.1 VM at Query Level

As mentioned above, if the ranked list of a query is sta-
ble after perturbation, it implies that the ranking model is
certain about the query in ranking. Otherwise, the rank-
ing model is uncertain about the query, and we treat it as
the informative query. Figure 2 shows two example queries,
either of which has three associated documents. While the
two queries seem to have similar score distributions, their
rank distributions turn out to be very different. The first
query, queryi, has a stable ranked list no matter which s-
core value is used to generate the ranked list, suggesting that
the current ranking model f is certain with query;. On the
contrary, the query querys: has multiple possible ranked list-
s, indicating that the ranking model f is less certain about
the query querys.

Given the rank distribution, VM aims to select unlabeled
examples with the largest variation in ranking. Inspired by
DCG function [7], we define the gain function g of the ranked
list as:

gllist) =>_(2° — 1) /log(1 + r)

r=1

(2)

Where s(r) is the predicted ranking score of the document
without noise perturbation at rank r in the list, and n is the
number of documents related to the list.

We represent the variation of the ranking associated with
a query as the gain variance of the query and approximate
it with the gain variance of the ranked lists sampled from
the corresponding rank distribution. If a query has a stable
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ranked list, its corresponding gain values will be consistent,
and the variance in the gain will be zero. Otherwise, it
will yield a large variance in the gain. Therefore, the query
selection criteria can be expressed as:

®3)

q" = argmax var(g(list,q))
gEpool

Where pool represents the large size unlabeled data set, and
var(g(list,q)) denotes the variance in the gain by sampling
the query level rank distribution of the query gq.

4.2 VM at Document Level

The query level sampling selects all documents associated
with the least certain query. However, a least certain query
may still contain documents that the ranking model is cer-
tain about. Hence we aim to select only documents that
the ranking model is least certain as the informative exam-
ples. Take the above example query querys (Figure 2) for
instance, no matter how we sample the document level rank
distribution of docz, the ranking of the document docs stays
the same. Therefore, although the ranking model is not cer-
tain about the ranking of the query querys, it is certain sure
about the rank of the document docs. Thus we may choose
the documents doci and docs as the informative documents.

Similar to the query level active learning, we use the vari-
ance in the gain values to measure the stability of each doc-
ument regarding to the document level rank distributions.
The document selection criteria can be represented as:

(4)

d” = argmax var(g(list,d))
d€pool
Where var(g(list,d)) denotes the variance in the gain by
sampling the document level rank distribution of the docu-
ment d.

4.3 VM at Two-stage

The query level active learning selects all documents as-
sociated with a query. Actually, it may include some non-
informative documents because there are usually a large
number of documents associated with a selected query. S-
ince the quality of a ranking model is mainly scored by the
top-k documents, most of them are non-informative. The
document level active learning selects documents individ-
ually. However, this sampling strategy ignores the query-
document structure and the dependency among the docu-
ments given a query and hence may not be optimal.

To address the problem, Long et al [8] proposed a two-
stage active learning algorithm, which first selects the most
informative queries at the query level and then selects the
most informative documents associated with the selected
queries. We follow this two-stage active learning strategy
in designing the proposed algorithm.

5. EXPERIMENT
5.1 Dataset and Experimental Setting

We use two learning to rank data sets to validate the
proposed active learning algorithms. The first one is the
LETOR 4.0 data set, a benchmark data set on learning to
rank for information retrieval. The query-document pairs
are labeled with a three-level relevance judgment: {Bad,
Fair, Good}. The second dataset is the Web search da-
ta set from a commercial search engine (denoted as WEB-



Table 1: The statistics of the two data sets.

Data Set AL set | #queries | #documents
base set 60 2,000
LETOR 4.0 pool set 1940 66,383
test set 297 10,262
base set 200 4,102
WEB-SEARCH | pool set 3000 60,609
test set 564 11,363

SEARCH). The relevance score is labeled with five-level rel-
evance scheme: {Bad, Fair, Good, Excellent, Perfect}. All
the features from both of the two datasets have been nor-
malized. Both of the two datasets are randomly split into
three parts at the query level: base set, pool set, and test
set. We use the base set as the small labeled data set to
train the initial base ranking models. The pool set is used
as a large size unlabeled data set to select the most infor-
mative examples. The test set is used to evaluate different
active learning strategies. The statistics of the two data sets
are listed in Table 1.

For the base learner, we use Gradient Boosting Decision
Tree (GBDT) [5] to train the ranking models. We first ex-
periment on noise injection to determine the parameter n
for Gaussian noise. Then, we compare the proposed VM al-
gorithms with several other active learning algorithms. The
algorithms select the top k£ informative examples. In this s-
tudy, the active learning process iterates 10 rounds. In each
round of active selection, 50 queries were selected at the
query level and 500 documents were selected at the docu-
ment level respectively. For the two-stage active learning,
we simply fix the number of documents selected for each
query to be 10 based on the result from [12]. We repeat
each experiment for 10 times and report the average DCG
at the rank 10 (DCG@10).

5.2 Noise Injection

In this section, we experiment on noise injection to empir-
ically determine the optimal parameters for Gaussian noise.
There are several important parameters in the Gaussian
noise injection process: the mean u, the covariance matrix
Y., and the number of noisy ‘replicates’ m, respectively. In
this study, we set g = 0 and ¥ = s°I and empirically fix
the number of noisy ‘replicates’ m to be 20. We experiment
with four values for s: s=0.000001, s=0.00001, s=0.0001,
s=0.001, denoted as s-1, s-2, s-3, and s-4, respectively.

Figure 3 shows the percentage of examples(documents)
that cross the decision boundary after noise injection with
different standard deviation. We observe that the percent-
age increases monotonically with the value of s . The results
agree with the following intuition. If a data example is very
close to the decision boundary, a small perturbation will
make it cross the boundary. Otherwise, a larger perturba-
tion is required. The experimental results of the VM with
different values of s show that s-1 consistently outperforms
the other three s-i(i = 2,3,4) on both datasets. Based on
the above experimental results, we set s to be 0.000001 for
Gaussian noise injection in the rest of our experiments.

5.3 Query Level Active Learning

In this section, we compare the query level VM algorithm
(denoted by VM-Q) with other two query level active learn-
ing algorithms. One is the query level ELO-DCG (denoted

1812

percentage
percentage

s—2 s-3
LETOR 4.0

s—4 s-2 s-3

WEB-SEARCH

s—4

s-1

s-1

Figure 3: The percentage of examples(documents)
that cross the decision boundary after perturbation,
where s-i(i = 1,...,4) denotes the standard deviation
for noise injection.
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Figure 4: Comparison Results at Query Level.

by ELO-DCG-Q) algorithm, representing one of state-of-art.
The other is random query selection (denoted by RANODM-
Q), representing a baseline.

Figure 4 shows the learning curves of the three query level
active learning algorithms. We observe that both VM-Q and
ELO-DCG-Q perform better than RANDOM-Q. The results
may be based on the following explanation. The ELO-DCG-
Q selects the queries with the largest expected DCG loss that
is directly related to the objective function DCG@10, and
the VM-Q chooses the most uncertain queries to improve the
ranking model performance effectively. Furthermore, VM-Q
performs as well as ELO-DCG-Q. T-test shows that VM-Q
is statistically equivalent to ELO-DCG-Q and significantly
better than RANDOM-Q (p<0.05) most of the times.

5.4 Document Level Active Learning

In this section, we show that document level VM algo-
rithm (denoted by VM-D) effectively selects the most infor-
mative documents. We compare VM-D with the document-
level ELO-DCG (denoted by ELO-DCG-D) algorithm , the
traditional uncertainty sampling for regression (denoted by
UNCERTAINTY-R) [9] and random document selection (de-
noted by RANODM-D).

The results of the four document level algorithms are plot-
ted in Figure 5. We observe that VM-D consistently per-
forms better than the other three methods. The perfor-
mance of ELO-DCG-D is better than UNCERTAINTY-R
in most of the cases, and RANDOM-D performs the worst.
Here we are particularly interested in the performance gap
between VM-D and UNCERTAINTY-R since both of the
two algorithms aim to select the examples with uncertain-
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Figure 5: Comparison Results at Document Level.
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Figure 6: Comparison Results at Two-Stage.

ty. The results may be based on the possible explanation.
While the classical UNCERTAINTY-R simply selects the
documents with the highest uncertainty in predicted rank-
ing scores, the VM-D selects the documents with the most
uncertainty in ranking, and such examples may contribute
more to the performance of the ranking model. T-test shows
that VM-D performs statistically better than ELO-DCG-D,
UNCERTAINTY-R and RANDOM-D (p<0.05) in most of
the cases.

5.5 Two-Stage Active Learning

In this section, we compare our two-stage VM algorithm
(denoted by VM-QD) with two other two-stage active learn-
ing algorithms. One is two-stage ELO-DCG algorithm (de-
noted by ELO-DCG-QD). The other is two-stage random
selection (denoted by RANDOM-QD), i.e. random query
selection followed by random document selection for each
selected query.

Figure 6 shows the comparison results for the three two-
stage algorithms on the LETOR 4.0 data set and the WEB-
SEARCH data set, respectively. We observe that among
the three methods, VM-QD achieves the highest DCG@Q10
scores, and ELO-DCG-QD performs the second. The re-
sults indicate that both the VM-QD and ELO-DCG-QD
can select more informative queries and more informative
documents than RANDOM-QD. T-test demonstrates that
VM-QD performs significantly better than ELO-DCG-QD
(p<0.05) at some of the check points and statistically out-
performs RANDOM-QD (p<0.05) most of the times.

6. CONCLUSION

In this paper, we propose a general active learning strat-
egy, Variance Maximization, with application to learning to
rank. Noise injection is employed to generate the score dis-
tribution. We transform the score distribution to the rank
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distribution and then adopt the variance of DCG-like gain
to measure the model’s uncertainty for each unlabeled ex-
ample. The proposed active learning strategy is applied at
both the query level and the document level, and a two-stage
active learning algorithm is further extended. Experimental
results on both the LETOR 4.0 data set and a real-world
Web search data set have demonstrated the effectiveness of
the proposed algorithms.
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